31 agosto 2011

TIPOS DE SOCKET Y SLOT PARA CONECTAR EL PROCESADOR A LA PLACA BASE

¿QUE ES UN SOCKET?

Un socket es un zócalo con una serie de pequeños agujeros siguiendo una matriz determinada, donde encajan los pines de los procesadores para permitir la conexión entre estos elementos.
Dicha matriz recibe el nombre de PGA (Pin grid array), y es la que suele determinar la denominación del socket.

Las primeras placas base en incorporar un sock
et para la conexión del procesador (aunque no exactamente como los conocemos actualmente) fueron las dedicadas a la serie 80386 (tanto de Intel como de AMD y otros fabricantes).

Estos primeros sockets consistían tan solo en la matriz de conexión. Los PC anteriores tenían el procesador incorporado en la placa base, bien soldado o bien conectado en zócalos similares a los que se utilizar en la actualidad para colocar la BIOS.

Con la llegada de los procesadores del tipo 80486 se hizo patente la necesidad de un sistema que hiciera más fácil la sustitución del procesador, y a raíz de esta necesidad salieron los socket, ya con la forma en la que han llegado hasta nuestros días.

Existen una gran variedad de socket, unas veces compatibles con todas las marcas de procesadores y otras (a partir de la expiración del acuerdo de fabricación entre INTEL y AMD) compatibles con tan solo una de estas.
Vamos a ver los diferentes topos de sockets que ha habido, así como los procesadores que soportaban, refiriéndonos a ordenadores de sobremesa basados en x86 y x64 y servidores basados en ellos.

Socket 1:


Es el primer socket estandarizado para 80486. Era compatible con varios procesadores x86 de diferentes marcas.


Socket 2.

Es una evolución del socket 1, con soporte para los procesadores x86 de la serie 486SX, 486DX (en sus varias versiones) y 486DX Overdrive (antecesores de los Pentium).

Soportaba los procesadores 486 SX, 486 DX, 486 DX2, 486 DX4, DX4 Overdrive y Pentium Overdrive.

Socket 3.

Es el último socket diseñado para los 486. Tiene la particularidad de trabajar tanto a 5v como a 3.3v (se controlaba mediante un pin en la placa base).

Soportaba los procesadores 486DX, 486SX, 486DX2, 486DX4, AMD 5x86, Cyrix 5x86, Pentium OverDrive 63 y Pentium OverDrive 83.

Socket 4.

Es el primer socket para procesadores Pentium. No tuvo mucha aceptación, ya que al poco tiempo Intel sacó al mercado los Pentium a 75Mhz y 3.3v, con 320 pines.

Soportaba los Pentium de primera generación (de entre 60Mhz y 66Mhz).

Socket 5

Fueron los primeros sockets en poder utilizar los Pentium I con bus de memoria 64 bits (por supuesto, los procesadores eran de 32 bits). Esto se lograba trabajando con dos módulos de memoria (de 32 bits) simultáneamente, por lo que los módulos de memoria tenían que ir siempre por pares. También soportaba la caché L2 en micro (hasta entonces esta caché iba en placa base).

En este socket aparecen por primera vez las pestañas en el socket para la instalación de un disipador. Hasta ese momento, los procesadores o bien incluían un disipador o bien se ponían sobre este (ya fuera solo disipador o disipador con ventilador) mediante unas pestañas, pero no sujetando el disipador al socket, sino al procesador.

Socket 7

Desarrollado para soportar una amplia gama de procesadores x86 del tipo Pentium y de diferentes fabricantes, soportaba diferentes voltajes y frecuencias.

Procesadores soportados: Intel Pentium I, AMD K5 y K6 y Cyrix 6x86 (y MX) P120 - P233.
Fue el último socket desarrollado para soportar tanto procesadores Intel como AMD.
A continuación enumeraremos los distintos sockets dependiendo de la plataforma a Utilizar.


INTEL

Socket 8.

Es el primer socket desarrollado exclusivamente para los Intel Pentium Pro y Pentium II Overdrive (que no eran otra cosa que una evolución del Pentium Pro).

En la práctica fue muy poco utilizado, ya que el Pentium Pro tuvo una vida bastante corta y con la salida del Pentium II Intel comenzó a utilizar el Slot 1.

Slot 1.
Con la salida al mercado de los Pentium II Intel cambió el sistema de conexión entre el procesador y la placa base del tipo socket a tipo Slot.

Se trata de una ranura similar a las PCI, pero con 242 contactos colocados en una sola de sus caras.
Este sistema fue utilizado solo en los Pentium II y, con un adaptador, en los primeros Pentium III.


Soportaba los siguientes procesadores: Pentium II (entre 233Mhz y 450Mhz), Celeron (entre 266Mhz y 433Mhz), Pentium III Katmai (entre 450Mhz y 600Mhz) y Pentium III coppermine (estos con un adaptador) de entre 450Mhz y 1.133Mhz).

Es más rápido que el socket 7, ya que permite una mayor frecuencia de reloj, pero tiene bastantes inconvenientes, entre los que destaca una cierta tendencia a descolocarse el procesador, debido sobre todo al peso del conjunto y a su ubicación.

Aunque de aspecto idéntico al Slot A (desarrollado por AMD), estos no son compatibles entre sí, ya que las características de los mismos son diferentes.

Socket 370.

Socket 370. A la derecha podemos ver dos tipos diferentes de Pentium III,
a la izquierda un Coppermine y a la derecha un Taulatin.
Socket de 370 pines, de entre 1.5v y 1.8v.

Este socket sustituyó al Slot 1 para la utilización de Pentium III, ya que no necesitaba un adaptador especial para conectarlo y además es más rápido que dicho Slot.

Fue desarrollado por VIA (que aún lo sigue produciendo para algunos procesadores que fabrica para este tipo de socket)

Procesadores que soporta: Celeron Mendocino entre 300Mhz y 500Mhz, Celeron y Pentium III Coppermine entre 533Mhz y 1.133Mhz, Celeron y Pentium III Tualatin entre 1.133Mh y 1.400Mh, así como los procesadores Cyrix III en sus diferentes modelos.


Socket 423.

Fue el primer socket desarrollado para Pentium 4, pero pronto dejó de utilizarse (Intel fabricó procesadores P4 423 entre noviembre de 2000 y agosto de 2001) por las limitaciones que tenía, entre otras la de no soportar frecuencias de más de 2Ghz.

Se distingue fácilmente del 478 por su mayor tamaño.

Casi todas las placas de 423 utilizan los módulos de memoria del tipo del RIMM (Rambus Inline Memory Module), ya que cuando salieron al mercado Intel tenía una serie de acuerdos comerciales con Rambus.

Al igual que ocurrió con la salida del socket 360, cuando el socket 423 fue sustituido por el socket 478 salieron al mercado adaptadores para poder utilizar los nuevos procesadores 478 en placas con socket 423. Eso sí, con la limitación de un máximo de 2Ghz.

Socket 478


Quizás el más conocido de todos, es identificable, además de por su reducido tamaño, por su característico sistema de anclaje del disipador.

Soporta una amplísima gama de procesadores Intel de 32 bits, tanto Celeron como P4.

Junto con el socket 370 es el que más tiempo ha estado en uso. De hecho todavía se utiliza y sigue habiendo procesadores a la venta para el (aunque solo de la gama Celeron).

Socket 604


Se trata de un socket desarrollado exclusivamente para los procesadores de la gama Xeon (procesadores para servidores). Es muy frecuente que se trate de placas duales (es decir, con dos procesadores).

Socket 775.

Por primera vez se sustituye el sistema de pines (macho en el procesador y hembra en el socket) por el de contactos, bastante menos delicado que el anterior.

Es el tipo de socket que Intel utiliza en la actualidad.

Soporta toda la gama Intel de procesadores de 64 bits (Intel 64), tanto de un solo núcleo como de doble núcleo y los novísimos Quad de cuatro núcleos.


AMD

Socket Súper 7

Basado en el socket 7 de Intel, se desarrolló para soportar un mayor índice de ciclos de reloj, así como para poder usar el nuevo puerto AGP

Es el primer socket desarrollado exclusivamente para procesadores AMD.
Procesadores soportados: AMD K6-2 y K6-3

Slot A

Desarrollado en un principio por Digital para sus procesadores Alpha (los mejores procesadores de su época), cuando fue abandonado este proyecto muchos de los ingenieros de Digital pasaron a AMD, desarrollando una serie de procesadores totalmente nuevos (los primeros K7), que utilizaron este slot con unos rendimientos sorprendentes para su época.


Aunque de aspecto idéntico al Slot 1, estos no son compatibles entre sí, ya que las características de los mismos son diferentes.


Socket A (o Socket 462)

Socket muy utilizado por AMD, soportaba una gran variedad de procesadores

Los procesadores que soporta son: AMD Duron (800 MHz - 1800 MHz), AMD Sempron (2000+ - 3000+), AMD Athlon (650 MHz - 1400 MHz) y AMD Athlon XP (1500+ - 3200+). Fue la primera plataforma que soportó un procesador de más de 1Ghz.


Socket 754.


Sustituyó al socket A, a fin de agilizar el tráfico de datos y dar soporte a los nuevos procesadores AMD de 64 bits reales (AMD64), conocidos también como AMD K8.

A partir de este socket se abandonan las sujeciones del disipador directamente al socket, sustituyéndose estas por una estructura adosada a la placa base, como se puede observar en la imagen del socket AM2.

Soporta procesadores AMD Sempron (2500+ - 3000+) y AMD Athlon 64 (2800+ - 3700+).

Aun sigue utilizándose, sobre todo en equipos de bajo coste para algunos mercados, con procesadores Sempron.

Socket 940

Socket de 940 pines, entre 0.80v y 1.55v, con un bus de 200Mhz y FSB de 800 y 1Ghz, soportando HyperTransport. Soporta módulos de memoria DDR, que es gestionada directamente por el procesador.
Este socket fue desarrollado para los procesadores AMD Opteron (para servidores) y para los primeros AMD 64 FX (los primeros dual core de alto rendimiento)

Socket 939

Socket de 939 pines, entre 0.80v y 1.55v, con un bus de 200Mhz y FSB de 800 llegando a los 2Ghz, soportando HyperTransport. Soporta módulos de memoria DDR, que es gestionada directamente por el procesador.

Este socket soporta una amplia gama de procesadores, incluyendo ya toda la gama de procesadores de doble núcleo.

La gama de procesadores soportados es la siguiente:

AMD Sempron (a partir del 3000+), AMD Opteron (serie 1xxx), AMD 64, AMD 64 FX (FX 60) y AMD 64 X2.

Este socket está siendo sustituido (al igual que los procesadores que soporta) por el nuevo socket AM2.

Socket AM2.

Imagen de un socket AM2. Si lo comparamos con el 940 vemos claramente la diferente posición de los tetones de posicionamiento (pontos son pines en el interior del socket). También podemos observar en esta imagen la estructura de sujeción del disipador.

Socket de 940 pines, entre 0.80v y 1.55v, con un bus de 200Mhz y FSB de 800 llegando a los 2Ghz, soportando HyperTransport. Soporta módulos de memoria DDR2, que es gestionada directamente por el procesador.

Su rendimiento es similar al de los equipos basados en socket 939 (con procesadores AMD 64 con núcleo Venice y a igualdad de velocidad de reloj), pero están diseñados para los módulos de memoria DDR2, teniendo además un consumo sensiblemente inferior.

Los procesadores soportados son: AMD Sempron (núcleo Manila, 3000+ en adelante), AMD 64 (núcleo Orleans, 3500+ en adelante), AMD 64 X2 (núcleo Windsor, 3800+ en adelante) y AMD 64 FX (núcleo Windsor, FX-62 en adelante).

OJO: A pesar de ser también de 940 pines, no hay que confundir este socket con el 940, ya que son totalmente incompatibles.

Socket F.

Se trata de un socket desarrollado por AMD para la nueva generación de AMD Opteron (series 2000 (doble núcleo) y 8000 (de cuatro núcleos)) y FX (FX-7x) Quad (de cuatro núcleos).

Al igual que el socket 775 de Intel es del tipo LGA, es decir, con contactos tipo bola en el socket y lisos en el procesador.

26 agosto 2011

Como Poner un lookandfeel deferente en java :)

import javax.swing.*; import java.awt.event.*; import java.awt.*; public class n extends JFrame{ public n(){ super("Ejemplo 1"); JButton boton = new JButton("Mostrar dialogo"); boton.addActionListener(new ActionListener(){ public void actionPerformed(ActionEvent e){ JOptionPane.showMessageDialog(null,"Y así­ se ve un cuadro de dialogo de error","Mensaje",JOptionPane.ERROR_MESSAGE); } }); //optenemos el contenerdor global del panel y le agregamos un jlabel getContentPane().add(new JLabel("Asi se ve un Frame"), BorderLayout.NORTH); //agregamos un boton al contenedor global getContentPane().add(boton); //establecemos un tamaño personalizdo al jframe setSize(200,80); setVisible(true); } public static void main(String args[]){ //se coloca lookandfeel a la ventana JFrame.setDefaultLookAndFeelDecorated(true); //se coloca lookand feel a los mensajes JDialog.setDefaultLookAndFeelDecorated(true); //se instancia la clase n ventana = new n(); //se activa aopcion de cerrar de jframe ventana.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); } }

Sencilla forma de verificar si la variable es un valor numerico en matlab

Este codigo puede sacar de apuros a muchas personas hay se los dejo:

 if isnan(str2double(et))
errordlg('El valor en coeficiente de expacion termica debe ser numérico','ERROR')
end
errordlg: es para imprimir una ventana de advertencia como JOptionpane en java
str2double: convierte una cadena de caracteres en un tipo de datos double
isnan: devuelve true si no es un numero

Algunos descripciones de dispositivos de Salida


¿Que son Tarjeta de Sonido Full Duplex y que ventajas tienen?

Las dos funciones principales de estas tarjetas son la generación o reproducción de sonido y la entrada o grabación del mismo. Para reproducir sonidos, las tarjetas incluyen un chip sintetizador que genera ondas musicales. Este sintetizador solía emplear la tecnología FM, que emula el sonido de instrumentos reales mediante pura programación; sin embargo, una técnica relativamente reciente ha eclipsado a la síntesis FM, y es la síntesis por tabla de ondas (WaveTable).

En WaveTable se usan grabaciones de instrumentos reales, produciéndose un gran salto en calidad de la reproducción, ya que se pasa de simular artificialmente un sonido a emitir uno real. Las tarjetas que usan esta técnica suelen incluir una memoria ROM donde almacenan dichos "samples"; normalmente se incluyen zócalos SIMM para añadir memoria a la tarjeta, de modo que se nos permita incorporar más instrumentos a la misma.

Una buena tarjeta de sonido, además de incluir la tecnología WaveTable, debe permitir que se añada la mayor cantidad posible de memoria. Algunos modelos admiten hasta 28 Megas de RAM (cuanta más, mejor).

Efectos

Una tarjeta de sonido también es capaz de manipular las formas de onda definidas; para ello emplea un chip DSP (Digital Signal Processor, Procesador Digital de Señales), que le permite obtener efectos de eco, reverberación, coros, etc. Las más avanzadas incluyen funciones ASP (Advanced Signal Processor, Procesador de Señal Avanzado), que amplía considerablemente la complejidad de los efectos.Por lo que a mayor variedad de efectos, más posibilidades ofrecerá la tarjeta.

Polifonía

¿Qué queremos decir cuando una tarjeta tiene 20 voces? Nos estamos refiriendo a la polifonía, es decir, el número de instrumentos o sonidos que la tarjeta es capaz de emitir al mismo tiempo. Las más sencillas suelen disponer de 20 voces, normalmente proporcionadas por el sintetizador FM, pero hoy en día no debemos conformarnos con menos de 32 voces. Las tarjetas más avanzadas logran incluso 64 voces mediante sofisticados procesadores, convirtiéndolas en el llamado segmento de la gama alta.

MIDI

La práctica totalidad de tarjetas de sonido del mercado incluyen puerto MIDI; se trata de un estándar creado por varios fabricantes, que permite la conexión de cualquier instrumento, que cumpla con esta norma, al ordenador, e intercambiar sonido y datos entre ellos. Así, es posible controlar un instrumento desde el PC, enviándole las diferentes notas que debe tocar, y viceversa; para ello se utilizan los llamados secuenciadores MIDI.

En este apartado hay poco que comentar. Simplemente, si vamos a emplear algún instrumento de este tipo, habrá que cerciorarse de que la tarjeta incluya los conectores DIN apropiados para engancharla al instrumento en cuestión, y el software secuenciador adecuado, que también suele regalarse con el periférico.

Un detalle que conviene comentar en este artículo, es que en el mismo puerto MIDI se puede conectar un Joystick, algo muy de agradecer por el usuario, puesto que normalmente los conocidos equipos Pentium no incorporan de fábrica dicho conector, algo habitual, por otra parte, en sus inmediatos antecesores, los ordenadores 486.

Frecuencia de muestreo

Otra de las funciones básicas de una tarjeta de sonido es la digitalización; para que el ordenador pueda tratar el sonido, debe convertirlo de su estado original (analógico) al formato que él entiende, binario (digital). En este proceso se realiza lo que se denomina muestreo, que es recoger la información y cuantificarla, es decir, medir la altura o amplitud de la onda. El proceso se realiza a una velocidad fija, llamada frecuencia de muestreo; cuanto mayor sea esta, más calidad tendrá el sonido, porque más continua será la adquisición del mismo.

Resumiendo, lo que aquí nos interesa saber es que la frecuencia de muestreo es la que marcará la calidad de la grabación; por tanto, es preciso saber que la frecuencia mínima recomendable es de 44.1 KHz, con la que podemos obtener una calidad comparable a la de un disco compacto.

Otras consideraciones

Existen otros factores que se deben tener en cuenta: por ejemplo, mucha gente prefiere controlar el volumen de la tarjeta de forma manual, mediante la típica ruedecilla en la parte exterior de la misma. Sin embargo, la tendencia normal es incluir este control (además de otros, como graves, agudos, etc.) por software, así que debe ser tenido en cuenta este detalle si es importante para nosotros.

La popularización de Internet ha propiciado la aparición de un nuevo uso para las tarjetas de sonido: la telefonía a través de la red de redes. Efectivamente, con un micrófono y el software adecuado, podemos utilizar la tarjeta para hablar con cualquier persona del planeta (que posea el mismo equipamiento, claro) a precio de llamada local.

Sin embargo, la calidad de la conversación dependerá de dos conceptos: half-duplex y full-duplex. Resumiendo un poco, full-duplex permite enviar y recibir información al mismo tiempo, mientras que half-duplex sólo puede realizar una de las dos operaciones en cada momento. Traduciendo esto a una conversación, tenemos que el half-duplex nos obliga a hablar como si utilizáramos un walkie-talkie; es decir, hay que esperar a que uno diga algo para poder responder, mientras que el full-duplex nos ofrece bi-direccionalidad, es decir, mantener una conversación normal como si fuera un teléfono.

En algunos casos, el fabricante posee controladores que añaden funcionalidad full-duplex a tarjetas que no implementan esta forma de trabajo, por lo que puede ser una buena idea ir a la página Web del fabricante en cuestión.

Por último, y aunque sea de pasada, puesto que se trata de un requisito casi obligatorio, resaltaremos la conveniencia de adquirir una tarjeta que cumpla al cien por cien con la normativa Plug and Play; seguro que muchos lo agradecerán.

Pros y contras del puerto IDE

Un gran porcentaje de tarjetas de sonido incluye conexión IDE. ¿Es realmente útil este puerto adicional? En principio, sí que lo es; normalmente, cuando se adquiere una tarjeta de sonido, es casi seguro que el comprador ya posee, o poseerá, un lector de CD-ROM, si es que no compra las dos cosas al mismo tiempo. Los CD-ROM más difundidos implementan la conexión IDE por ser barata y eficaz.

En los ordenadores Pentium se incluyen dos puertos IDE, por lo que no suele haber problemas; ahora bien, si el PC es un 486 o inferior (todavía existe un parque muy elevado de estas máquinas) es bastante posible que el equipo sólo tenga un puerto IDE. Si la tarjeta de sonido incluye su propia conexión, la labor se hará más sencilla, ya que podemos enganchar ahí nuestro lector.

Por otro lado, un puerto IDE adicional consumirá una interrupción más en el sistema (normalmente IRQ 11), y además Windows 95 no se lleva bien con puertos IDE terciarios y cuaternarios, traduciéndose esto en el temible símbolo de admiración amarillo en la lista de dispositivos. A pesar de todo, y vista la situación, la balanza se inclina hacia el lado positivo, ¿no crees?.

La compatibilidad

Indudablemente, en estos momentos, el mercado de las tarjetas de sonido tiene un nombre propio: Sound Blaster. En la actualidad, cualquier tarjeta que se precie debe mantener una total compatibilidad con el estándar impuesto por la compañía Creative Labs; existen otros, como el pionero Adlib o el Windows Sound System de Microsoft. Pero todos los juegos y programas que utilizan sonido exigen el uso de una tarjeta compatible Sound Blaster, así que sobre este tema no hay mucho más que comentar.

Otro asunto es la forma de ofrecer dicha compatibilidad: por software o por hardware. La compatibilidad vía soft puede tener algunas limitaciones; principalmente, puede ser fuente de problemas con programas que accedan a bajo nivel o de forma especial a las funciones de la tarjeta. Asimismo, los controladores de emulación deben estar bien diseñados, optimizados y comprobados, para no caer en incompatibilidades, justo lo contrario de lo que se desea alcanzar. Por tanto, es preferible la emulación por hardware.

Sonido 3D

El sonido 3D consiste en añadir un efecto dimensional a las ondas generadas por la tarjeta; estas técnicas permiten ampliar el campo estéreo, y aportan una mayor profundidad al sonido habitual. Normalmente, estos efectos se consiguen realizando mezclas específicas para los canales derecho e izquierdo, para simular sensaciones de hueco y direccionalidad.
Seguro que os suenan nombres como SRS (Surround Sound), Dolby Prologic o Q-Sound; estas técnicas son capaces de ubicar fuentes de sonido en el espacio, y desplazarlas alrededor del asombrado usuario. Y decimos asombrado, porque el efecto conseguido es realmente fantástico, y aporta nuevas e insospechadas posibilidades al software multimedia y, en especial, a los juegos. Es fácil hacer una recomendación en este tema: ¡No renunciéis al sonido 3D!

¿Que son las Impresoras tipo Ploter y para que se utilizan?

Trazador, también conocido por su nombre inglés, plotter, dispositivo que se utiliza para dibujar con plumillas imágenes o textos siguiendo los comandos procedentes de un ordenador o computadora. Las plumillas pueden ser de distintos colores. A diferencia de las impresoras, que construyen los gráficos como una sucesión de puntos, los trazadores dibujan líneas continuas, lo que permite una gran precisión y posibilidades de escalabilidad; esto los hace especialmente útiles para trazar imágenes en el campo de la arquitectura y la ingeniería, en combinación con aplicaciones de CAD.

Los primeros trazadores eran los denominados de tambor; las plumillas dibujaban sobre un papel que giraba sobre un tambor. El primer dispositivo de este tipo, el CalComp modelo 565, data de 1959; tenía una sola plumilla y utilizaba papeles de 28 cm de ancho.
En 1970 aparecieron los trazadores planos, como el CalComp modelo 738, que permitía utilizar papeles de mayor tamaño.

De reciente aparición son los trazadores electrostáticos, que emplean un método de impresión similar al de las impresoras láser. Trabajan en color o en blanco y negro y obtienen gráficos de alta resolución. Pueden utilizar papel de hasta 180 cm de ancho.
Las impresoras reciben textos e imágenes de la computadora y los imprimen en papel. Las impresoras matriciales emplean minúsculos alambres que golpean una cinta entintada formando caracteres. Las impresoras láser emplean haces de luz para trazar imágenes en un tambor que posteriormente recoge pequeñas partículas de un pigmento negro denominado tóner. El tóner se aplica sobre la hoja de papel para producir una imagen. Las impresoras de chorro de tinta lanzan gotitas de tinta sobre el papel para formar caracteres e imágenes.
En impresión, la alta resolución se aplica generalmente al campo de las impresoras láser y de chorro de tinta y al equipamiento necesario para fotocomposición, donde la resolución se define como el número de puntos por pulgada (ppp) que se imprimen. En general, la salida mínima de una impresora láser es de 300 ppp.

14 agosto 2011

Cómo escoger una buena placa para nuestro equipo




PLACAS BASE


El primer punto, y quizá uno de los más importantes que vamos a tratar en este apartado con el que podremos construir nuestro propio ordenador, será el de las placas base. Como seguramente ya habréis podido leer en otras ocasiones, este componente es el pilar básico sobre el que cimentaremos nuestro ordenador, por lo que sus características técnicas y su vigencia tecnológica son aspectos que tendremos que tener muy en cuenta. El problema es que, debido a la continua evolución de la tecnología, los fabricantes de estos componentes no paran de presentar nuevos modelos, algunos con pequeñas diferencias respecto a su antecesor. Por ello, a continuación os presentamos los puntos más importantes a tener en cuenta para elegir adecuadamente.

1. Elegir nuestra plataforma

Lo primero que tendremos que hacer a la hora de elegir nuestra placa base es tener muy claro el tipo de equipo que queremos. El punto de partida será saber si va
mos a montar un procesador de la empresa AMD o Intel. Esta decisión, en la que entraremos unas páginas más adel
ante en el apartado de procesadores, es tan importante que de ella depende buena parte del resto componentes, modelos y actualizaciones futuras. Por ello hay que saber elegir bien. Además, tendremos que planificar de antemano las necesidades que ha de cubrir el equipo. Y es que también tendremos que tener muy claro qué equipo necesitamos: no será lo mismo comprar una placa para una máquina profesional que para un PC destinado a juegos o para un sencillo equipo ofimático.


2. ¿Slot o Socket?Los procesadores se podían encontrar en dos formatos: Slot o Socket. El primero de ellos, utilizado por los Pentium II, parte de los Pentium III y Athlon, así como por los primeros Celeron, es el más antiguo y en franca desaparición. En este formato, el procesador se halla soldado a una placa integrada que se introduce sobre la placa en forma de cartucho. Por ello, es bastante voluminoso y llamativo. Sin embargo, los modernos procesadores se presentan en formato Socket, es decir, el clásico microprocesador cuadrado y con decenas de patillas en su parte inferior. En estos momentos, la práctica mayoría de las placas y proc


esadores se presentan en este formato Socket, pero ya no de patillas sino de contactos es el caso de los procesadores de doble núcleo.

3. La memoria soportada

Es importante conocer hasta qué punto afecta una y otra tecnología a nuestra placa base. Antes de nada hemos de saber que la posibilidad de utilizar uno u otro tipo nos la ofrece el chipset, por lo que la colocación de memoria SDRAM, DDR o RAMBUS en un
determinado modelo no es pura casualidad. Además, dependiendo del procesador que hayamos elegido, también podremos instalar un sistema u otro, por lo que como antes comentábamos, esta decisión es bastante trascendental. Actualmente, lo más inteligente es optar por memoria del tipo DDR, muy común en las últimas placas destinadas a los procesadores de AMD e Intel. Este tipo de memoria ofrece unas prestaciones superiores a la habitual SDRAM, a un precio muy similar, por lo que es la opción que ofrece mejor relación precio / prestaciones en estos

momentos.


4. Contar con un buen chipset

Uno de los eje
s fundamentales en
torno a los que gira esta in
ce
s
ante evolución es el chipset. Bajo este nombre se conocen el conjunto de chips que gobiernan la
placa y gestionan todas las operaciones que ésta realiza. Así, es la encargada de interconectar todos y cada uno de los buses de datos, interfaces de entrada/salida, controlar el proces
ador, la memoria, manejar los accesos a los discos y las unidades removibles, y un largo etcé
tera. La mayor parte de las nuevas tecn
ologías implantadas en las placas base han de estar respaldadas por el chipset. El ejemplo más claro es el tipo de memoria, la existencia de controladoras USB o Firewire, el soporte de la especificación IDE ATA-100 o la posibilidad d

e aprovechar las tarjetas gráficas AGP 4x. Para ayudarnos un poco a elegir un
a placa gobernada por un modelo adecuado a nuestras necesidades, y para que sepas qué modelos son más antiguos o más modernos, adjuntamos una tabla que nos servirá de guía.

5. La BIOS
Y si el chipset es el componente que gobierna la placa, la BIOS es el software que permite que esa placa y ese chipset ejecuten todas sus tareas correctamente. Es como el sistema operativo de la placa, gracias a el al encender nuestro PC comienzan a chequearse y configurarse todos los componentes del mismo. La pequeña porción de código de la BIOS se almacena en las placas actuales en chips de memoria Flash. Esto significa que podemos actualizar la BIOS gracias a un programa software que permite regrabar este chip. Y junto a la BIOS, encontramos la CMOS, una pequeña porción de memoria que guarda los valores de configuración de nuestro equipo. Aquí encontramos datos como la fecha y la hora, la secuencia de arranque o los parámetros de nuestros discos duros. Esta es la razón de que en las placas base encontremos unas pe

queñas pilas de botón, ya que esta memoria CMOS requiere una pequeña cantidad de corriente para mantener su información.

La mayor parte de las placas actuales integran BIOS de la empresa Award o AMI. Las diferencias entre ambas son casi nulas, sólo encontramos opciones minoritarias entre unas y otras, aunque las Award tradicionalmente han conseguido contar con mejores prestaciones. Y es que hemos de tener presente que el contar con una BIOS actualizada y perfectamente afinada es extremadamente importante para obtener las mejores prestaciones de nuestro PC.

6. Las Dual BIOS

Antes hemos hablado de la posi
bilidad de actualizar la BIOS de nuestra placa. Sin embargo, también es importante conocer los riesgos que entraña una posible actualización. Para llevar a cabo este proceso, lo idóneo es acudir a la página web del fabricante y descargar la última versión disponible para nuestro modelo en particular. Nunca intentemos actualizar nuestra placa con la BIOS de otro fabricante u otro modelo similar, ya que lo más probable es que la dejemos completamente inutilizada. Lo mismo ocurre si, tras cargar el programa regrabador, el proceso de actualización se interrumpe con un corte de luz o un apagado accidental.

Y dado el gran número de usuarios que han sufrido estos incidentes, actualmente encontramos modelos en el mercado equipados con
un sistema denominado Dual BIOS. En estas placas contamos con dos chip
s diferentes que almacenan sendas copias de la BIOS. Si actualizamos, lo hacemos sobre el chip principal. En caso de que algo salga mal, la placa recurrirá automáticamente al chip secundario, con el que podremos arrancar el sistema y volver a intentar la actualización. Por ello, os recomendamos que busquéis uno de estos modelos, ya que os podrá ahorrar futuros disgustos. La primera empresa que lo comenzó a ofrecer fue la conocida Gigabyte.


7. Interfaz IDE

La clásica controladora de discos duros y disquetera hace muchos años q
ue comenzó a ofrecerse integrada en interior de los chipset. Aun así, no ha parado de evolucionar, ofreciendo, además de los clásicos modos PIO de las pri
meras interfaces IDE, los modos Ultra DMA. Este sistema, que permite que el bus IDE funcione independientemente del procesador y pueda acceder directamente a la memoria de sistema, ha ofrecido velocidades de 33, 66 y más recientemente de 100 Mbits/sg. La mayor parte de las placas actuales integran chipset con soporte para el Ultra DMA 100, también conocido como ATA-100. Sin embargo, es algo que no hemos de olvidar si queremos disfrutar de los discos de última generación.
De la misma forma, últimamente hemos visto cómo se ha convertido en algo habitual la presencia de modelos con sistemas RAID (sistemas de duplicación y protección de datos) que utilizan la interfaz IDE. ABIT ha sido una de las primeras compañías en ofrecer esta curiosa combinación que, sin duda, resulta muy interesante para equipos profesionales y pequeños servidores. En estos casos, adem

ás de los dos puertos IDE habituales, a los que podemos conectar hasta cuatro dispositivos, encontramos otros dos adicionales a los que conectar sendos discos duros que mantendrán nuestros datos duplicados y, por tanto, a salvo de cualquier fallo físico o lógico.


8. Puertos USB y Firewire

La existencia de puertos serie o paralelo en las actuales placas base es una

verdadera reminiscencia del pasado que pocos años veremos desaparecer definitivamente. A cambio, ya disfrutamos de los puertos USB e incluso Firewire, que permiten conectar los periféricos de manera sencilla y rápida, además de ofrecer mejores prestaciones. Todavía es habitual encontrar placas con sólo dos conexiones USB, aunque cada vez es más frecuente que ofrezcan hasta cuatro de estos puertos. Esta moda, propiciada por la avalancha de dispositivos que utilizan este método de conexión, nos obliga a buscar es
te pequeño detalle a la hora de elegir placa. Los equipos con los últimos chipset de VIA para Athlon han sido los primeros en seguir esta necesaria tendencia. Sobre los Firewire, todavía no es habitual encontrarlo en los PCs de sobremesa. Sin embargo, Aopen ya ha presentado su primer modelo dotado de esta interfaz, lo que es un primer e importante paso para ver cómo definitivamente podremos disfrutar de todas sus ventajas.
9. Integración: ¿buena o mala?

Pues depende. La verdad es que para equipos domésticos u ofimáticos destinados a tareas sencillas, navegar por Internet, manejar correo electrónico, escribir textos y poco más, contar con una placa que integre audio y vídeo es la mejor y más económica opción. Sin embargo, si necesitamos un PC con gran

potencia gráfica, ya sea para disfrutar de juegos o aplicaciones profesionales, adquirir una placa qu
e integre el sistema gráfico no es una buena idea. Por suerte, el último chipset de Intel, el i815, aunque cuenta con vídeo
integrado en su versión
estándar, permite conectar cualquier tarjeta gráfica al puerto AGP. No obstante, puede que esta afirmación pierda sentido en cuanto se materialicen los proyectos que nVidia piensa sacar al mercado. Esta compañía, especialista en CPUs de alto rendimiento, tiene casi listo un chipset con una GeForce2 integrada que promete romper el tópico de que la integración es una mala idea. Respecto al sonido, y dado que la mayor pa

rte de la gente ni necesita ni aprecia las grandes prestaciones de muchos model
os profesionales, no es algo relevante llevarlo incluido en la placa. Más bien puede ser una buena opción que nos ahorrará algo de dinero.


10. El bus del sistema

Si hablamos un poco más de ciertos aspectos técnicos de estos componentes, no podemos dejar de lado la velocidad del bus de
sistema o FSB (Front Side Bus). Este dato nos indica a qué velocidad se transfieren los datos entre los componentes de la placa base, como por ejemplo, del procesador a la memoria. La velocidad del procesador es independiente del bus de sistema, aunque viene directamente marcada por él. Así, las velocidades de los procesadores se encuentran r
ealizando multiplicaciones de reloj respecto a la velocidad del sistema.

Debido a que la velocidad de los procesadores es cada vez mayor, también es cada vez más necesario contar con buses rápidos que muevan los datos sin problemas, evitando los cuellos de botella. Si hablamos de la plataforma Intel, las velocidades del bus de sistema oscilan entre los 66 MHz de parte de los actuales Celeron, los 100 MHz de ciertos Pentium III y los más modernos Celeron, y los 133 MHz de la mayoría de los Pentium III. En el caso de la plataforma Athlon, el bus ofrece mejores prestaciones, alcanzando los 200 o 266 MHz. En cualquier caso, la velocidad máxima que soporta nuestra placa viene marcada una vez más por el chipset. Por ello, si nos hacemos con uno de los últimos modelos, tendremos asegurada cierta vigencia tecnológica.

11. Formato de la placa

Y si todo lo anterior es importante desde el punto de vista técnico, no es m
enos fundamental tener en cuenta el factor físico en que se nos presenta la placa. Está claro que la mayor parte de los modelos disponibles en el mercado se basan en el conocido ATX. Ah
or
a bien, con el objeto de adecuar cada placa a las distintas cajas existentes, encontramos los formatos Micro-ATX y otras variantes que reducen o agrandan el tamaño de una placa ATX. Por ello,
si hemos optado por comprar una caja de pequeño tamaño, tendremo
s que adquirir una de estas pequeñas placas si no queremos tener problemas para instalar en el equipo. Asimismo, si nos hemos hecho con una gran caja con el objeto de contar con espacio para ampliaciones, lo ideal es buscar una placa que cumpla exactamente con el ATX original, el cual incluye generalmente hasta seis ranuras PCI que nos resultarán muy útiles para instalar un buen número de tarjetas.